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The law of mass action has been extended to include imperfect mixing and dead-zone effects in nonlinear
chemical systems. It is concluded that if there is more concentration difference between two homogeneous
layers in an incompletely mixed inhomogeneous solution obeying nonlinear kinetic laws, the reaction rate
also is increased compared to that calculated on the basis of average reactant concentrations for homogeneous
mixing. The presence of an unmixed dead-zone enhances this effect further.

The law of mass action1 was proposed on the basis of the
assumption that the chemically reacting components have
uniform concentrations throughout the solution. During kinetic
measurements the reaction vessel is normally stirred continu-
ously with the belief that it would make the solution homoge-
neous. However, experiments in the recent past indicate that
in at least some highly nonlinear kinetic systems exhibiting
bistability or sustained oscillations, significant concentration
gradients persist despite vigorous stirring of the solution. Spatial
heterogeneities may well nucleate in a poorly stirred region,
either in a batch reactor or in a continuous flow stirred tank
reactor (CSTR).

Mixing is accomplished in two stages, macromixing and
micromixing. Macromixing is the formation of macroscopic
heterogeneities and their breakdown into tiny segregated liquid
parcels. The segregations then either mix into the bulk by
molecular diffusion (micromixing) or escape through the outlet,
thus producing an effective “dead-zone” volume inside the
reactor, where mixing is very much inefficient. Stirring effects
become prominent whenever the micromixing time is compa-
rable or longer than the shortest chemical relaxation time.

Roux et al.2 obtained the dramatic effect of imperfect mixing
for the bistable chlorite-iodide reaction where the hysteresis
limits (as a function of the flow rate of the feed chemicals)
vary significantly with stirring rate. Menzinger and Dutt3

reported quantitative measurements of macroscopic concentra-
tion gradients in the same system carried out in a CSTR. They
obtained concentration differences up to 800% between poorly
and strongly stirred regions. Dutt et al.4,5 obtained stirring
induced bistability in the minimal bromate oscillator (MBO)
and Belousov-Zhabotinskii (BZ) reaction using gallic acid as
the organic substrate in CSTR experiments. Gyorgyi and Field6

reproduced the experimental results of stirring and mixing effects
on MBO system in numerical simulation using a micromixing
model.7a Several other models7b,c of imperfect mixing in a
CSTR have been proposed in the past to explain stirring and
mixing effects in nonlinear dynamics. The Kumpinsky and
Epstein7b model (KE) divides the reactor into active and dead

zones. All material enters and leaves the reactor through the
“active zone”, which is treated by the perfect mixing model.
The dead zone is also treated as perfectly mixed, and the
interchange between the two zones is reversible. The effect of
imperfect mixing seems to be a real phenomenon associated
with chemical systems obeying nonlinear kinetic laws. Imper-
fect mixing may well increase the overall reaction rate compared
to that calculated from an average homogeneous concentration,
which was pointed out by Epstein.8 In the present paper, we
have built up a general theory to extend the law of mass action
to include the effect of incomplete mixing in nonlinear dynamics
on the basis of a kinetic model, which has the following features
different from those of the KE7b model: The “reactive zone”
follows inhomogeneous kinetics, and the “dead-zone” volume
is assumed nonreactive due to no mixing.

We consider a CSTR of volumeV havingcj (moles/liter), the
average concentration of the species X, whose concentration
shows a spatial gradient in a real experiment due to the nonlinear
kinetic effect of the chemical processes. Since our reactor is
inhomogeneous due to imperfect mixing, the total volumeV is
assumed to be divided into two regions, namely, (1) a dead
zone (Vd) of volumexV (0 < x , 1) and (2) a reactive zone
(Vr) subdivided into a large number of small volumesVi, such
that the homogeneous concentration of X in theith compartment
(Xi) is given bycj(1 + Riδc), whereδc is a hypothetical quantity
of small value, less than or equal to the reciprocalcj times the
maximum deviation ofXi in the ith compartment from the
average valuecj, andRi is a real number such that mod(Ri) g
0. M denotes the molecular weight of X. Therefore, we have
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For the elementary reaction

the reaction rate (Rac) from average concentrationcj is given
according to the law of mass action by

wherek andn are respectively the rate constant and order of
the reaction. The overall rate from imperfect mixing (Rim) is
given by

In eq 6, we have imposed imperfect mixing, a nonlinear effect
to the homogeneous kinetics, eq 5, in terms ofRi’s and νi’s.
The ratio of the two reaction rates is given by

For first order reaction, one obtains from eqs 1, 3, and 7

Therefore, neither imperfect mixing nor the existence of a dead
zone inside the solution has any effect on the reaction rate of
first order reactions. For second order reactions, one obtains
from eqs 1, 3, and 7

For third order reactions (this, of course, is a rare possibility),
we have from eqs 1, 3, and 7

The cubic terms on the right hand side of eq 10 are either
positive or negative according to whetherRi is positive or
negative. In this case in the algebraic calculation it does not
help to have any idea about the value of the ratio. To resolve
this, we computed numerically this ratio for first, second, and
third order reactions from eq 7 using the constraints given by
eqs 1 and 3.

Figure 1a is the plot of the ratio versus percentage of
concentration difference (PCD) between two homogeneous
layers for first, second, and third order reactions, assuming that
the reactor contains only two homogeneous compartments due
to imperfect mixing,i having only two values, 1 and 2. The
bold lines assume the absence of any dead zone in the reactor,
and the dotted line is for the effect of the dead zone for the
second order reaction. Figure 1a shows that for the third order
reaction, the contribution from the cubic term in eq 10 is less
than that from the quadratic term, which ensures that the ratio
is greater than 1. For second order reactions, this ratio is also
greater than 1, as is evident from the analytical and numerical
calculations (vide eq 9 and Figure 1a), though the value is less
compared to that in the third order reaction. The presence of a
dead zone with a second order reaction increases the ratio
further, which should be noted with interest. For a first order
reaction, the ratio is 1, both analytically (eq 8) and numerically
(Figure 1a).
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Figure 1. (a) Ratio versus percentage of concentration difference
(PCD) between two homogeneous layers for first, second, and third
order reactions on the basis of a two homogeneous compartment model
of eq 7: δc, 10-3; Rl, 100;x, 0; V, 1000 mL. The dotted line corresponds
to x ) 0.1 for the second order reaction. (b) Ratio as a function ofRl

for two different PCD values (300 and 100), for the second order
reaction. The parameters are the same as those in a:x ) 0. (c) Ratio
as a function ofx for different values ofR1 for the second order
reaction: PCD) 300. The other parameters are the same as those in
a.
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Figure 1b is a plot of the ratio for the second order reaction
as a function ofR1 at two different PCD values, 300 and 100
in the absence of a dead zone. Sinceνi is inversely proportional
to mod(Ri) for a two compartment model (vide eq 3),R1 )
zero corresponds toVl(V2) ) V(0), and the ratio becomes 1 for
the parameters in the figure caption. AsR1 is increased, the
ratio gradually increases (V1 decreases,V2 increases) to make
V1 equal toV2 at R1, 600 (ratio, 1.36) for PCD, 300. The ratio
attains the maximum value (1.56) atR1, 1500 (V1, 1/5V; V2, 4/5V).
With a further increase ofR1, the ratio starts to decrease (V1

decreases further andV2 increases) and atR1, 3000 (V1, 0; V2,
V), the ratio becomes 1 again. Therefore, for PCD, 300, the
effect of imperfect mixing is maximum ifV1:V2 ) 1:4. The
effect becomes less pronounced if a lower PCD value of 100 is
considered, for which the maximum effect (ratio, 1.12) is
observed atR1, 500, for whichV1:V2 ) 1:2.

Figure 1c is a plot of the ratio as a function ofx for different
values ofR1 at a constant PCD value, 300, illustrating the dead-
zone effect in second order chemical kinetics. The plots in
Figure 1c are according to what is expected from Figure 1b
with a gradual increase ofR1 for PCD, 300. It is clear from
Figure 1c that, for all of the plots, the ratio is increased further
with an increase in the volume of the dead zone in the reactor.

For i >2, it is necessary to find outRi’s and Vi’s from
quantitative measurements which must satisfy the constraints
given by eqs 1 and 3. For a general reaction of the type

which is assumed to exhibit the phenomenon of imperfect
mixing, Rac, Rim, and the ratio are given accordingly in the
following expressions.

The theory presented here has incorporated the nonlinear effect
of imperfect mixing to the law of mass action to derive that,
the greater the concentration difference between two layers in
an inhomogeneous solution, the more is the overall reaction rate
compared to that calculated on the basis of average homoge-
neous concentration. The presence of dead zone enhances the
effect further, which is a result of great interest. Our result
conforms to the comment of Epstein8 on the basis of simple
calculations on an incompletely mixed second order kinetic
system.
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